Solar cell efficiency enhancement using a hemisphere texture containing metal nanostructures

Authors

  • Jafar Poursafar School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
Abstract:

One major problem of the conventional solar cells is low conversion efficiency. In this work, we have proposed a new design including hemisphere texturing on top and metallic plasmonic nanostructure under the silicon layer to enhance the optical absorption inside the photosensitive layer.    The finite-difference time-domain (FDTD) method has been used to investigate the interaction of light with the proposed structure. The simulation results demonstrated that the designed structure gives rise to 40% light absorption enhancement and 27% solar cell efficiency enhancement compared to a simple cell structure. The hemisphere texturing acts as a light concentrator and results in local electric field enhancement inside the silicon layer, and metallic nanostructure excites the plasmons. By combining the advantages of these two designs, the short circuit of the proposed structure showed more than 65% enhancement compared to the conventional structure.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Significant enhancement of power conversion efficiency for dye sensitized solar cell using 1D/3D network nanostructures as photoanodes

The single-crystalline TiO2 nanorod arrays with rutile phase have attracted much attention in the dye sensitized solar cells (DSSCs) applications because of their superior chemical stability, better electron transport properties, higher refractive index and low production cost. However, it suffers from a low surface area as compared with TiO2 nanoparticle films. In order to enlarge the surface ...

full text

New high-efficiency protective coating containing glycidyl-POSS nanocage for improvement of solar cell electrical parameters

Various antireflection thin films are often used to cover glass to increase solar cell electrical parameters. In the recent years many efforts have been done to develop and improve of solar cell films with high electrical output. One of the most important challenges of obtaining of high-efficiency thin films of solar cells is creation an effective light trapping system. The new polymeric protec...

full text

Efficiency Enhancement of Si Solar Cells by Using Nanostructured Single and Double Layer Anti-Reflective Coatings

The effect of single and double-layer anti-reflective coatings on efficiency enhancement of silicon solar cells was investigated. The reflectance of different anti-reflection structures were calculated using the transfer matrix method and then to predict the performance of solar cells coated by these structures, the weighted average reflectance curves were used as an input of a PC1D simulation....

full text

Ag plasmonic nanostructures and a novel gel electrolyte in a high efficiency TiO2/CdS solar cell.

A novel photoanode architecture with plasmonic silver (Ag) nanostructures embedded in titania (TiO2), which served as the wide band gap semiconducting support and CdS quantum dots (QDs), as light absorbers, is presented. Ag nanostructures were prepared by a polyol method and are comprised of clumps of nanorods, 15-35 nm wide, interspersed with globular nanoparticles and they were characterized ...

full text

Enhancement in energy and exergy efficiency of a solar receiver using suspended alumina nanparticles (nanofluid) as heat transfer fluid

An experimental and theoretical energy and exergy analysis was conducted for a cylindrical cavity receiver employed in a parabolic dish collector. Based on simultaneous energy and exergy analysis, the receiver average wall temperature and overall heat transfer coefficient were determined. A simplified Nusselt number for Heat Transfer Fluid (HTF) through the receiver as a function of Reynolds an...

full text

Fabrication of Organic Solar Cells with Branched Cauliflower-Like Nano Structures as a Back Electrode Replicated from a Natural Template of Cicada Wing Patterns

Nanostructures of noble metal materials have been used in organic solar cells for enhancement of performance and light trapping. In this study, we have introduced branched silver cauliflower-like nanopatterns as sub-wavelength structured metal grating in organic solar cells. Self-assembled fabrication process of branched nanopatterns was carried out on a bio-template of cicada wing nanonipple a...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 2

pages  103- 110

publication date 2020-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023